"Ionic liquids-in-salt"--a promising electrolyte concept for high-temperature lithium batteries?
نویسندگان
چکیده
A novel electrolyte concept for lithium-ion batteries, termed "ionic liquid-in-salt", is introduced. Our feasibility study on (1 - x)EMIMTFSI:(x)LiTFSI, 0.66 ≤ x ≤ 0.97, showed that at elevated temperatures the various dual liquid and solid phase regions are characterized by a wide thermal stability window, high ionic conductivities and appreciable mechanical integrity. The highest conductivity values are obtained for the compositions x = 0.70 and x = 0.75 (σ ≈ 6 × 10(-3) S cm(-1)) and are related to the final melting of the materials. Overall, high conductivities are observed for 0.70 < x < 0.90 while low ones are found for x > 0.90. Raman and NMR spectroscopies reveal the presence of highly mobile Li-containing species, partly identified as [Li(TFSI)2](-), albeit rather unexpected for these high x values, which might explain the high ionic conductivities observed. To prove the general value of our concept in more detail, some first results on BMIMTFSI and PY13TFSI based systems are also presented.
منابع مشابه
Ring-chain synergy in ionic liquid electrolytes for lithium batteries
Lithium-ion batteries have been attracting much attention which enables the revolution of wireless global communication. Ionic liquids are regarded as promising candidates for lithium-ion battery electrolytes because they can overcome the limitations of high operating temperatures and flammability concerns of traditional electrolytes. However, at low temperatures they suffer from low ionic cond...
متن کاملStabilizing lithium metal using ionic liquids for long-lived batteries
Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid-electrolyte interphase...
متن کاملA new, highly conductive, lithium salt/nonionic surfactant, lyotropic liquid-crystalline mesophase and its application.
Highly conductive electrolyte materials are an essential part of many electrochemical systems, such as fuel cells, solar cells, batteries, electrochromic devices, and next-generation renewable-energy sources. The growing diversity in batteries and electrochemical cells increases the demand for novel electrolyte materials. For instance, in solar-cell applications, an electrolyte material with hi...
متن کاملElectrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content.
Electrolytes of a room temperature ionic liquid (RTIL), trimethyl(isobutyl)phosphonium (P111i4) bis(fluorosulfonyl)imide (FSI) with a wide range of lithium bis(fluorosulfonyl)imide (LiFSI) salt concentrations (up to 3.8 mol kg(-1) of salt in the RTIL) were characterised using a combination of techniques including viscosity, conductivity, differential scanning calorimetry (DSC), electrochemical ...
متن کاملTaichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries
Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, suf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 24 شماره
صفحات -
تاریخ انتشار 2014